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Exact Solutions in Barker's Homogeneous 
Isotropic Cosmologies 
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We derive a complete set of new exact k = 0, __+ 1 radiation solutions of Barker's 
homogeneous isotropic cosmologies. In the very early universe they reduce to 
the asymptotic solutions of Yepes and Dominguez-Tenreiro. Consistency with 
the standard cosmological model constrains the solution's free parameters. 

1. INTRODUCTION 

In the Brans-Dicke (1961) scalar- tensor theory of  gravity Newton's 
gravitational constant G is time-dependent and a dynamical scalar field, 
with dimensions of G -~, is present. But in Barker's (1978) theory, a special 
case of  the Nordtvedt (1970) formulation of the scalar-tensor theory 
(Bergmann, 1968; Wagoner, 1970; Will, 1974), G is a genuine constant and 
the scalar field is dimensionless. Observations appear to favor a constant G 
(Norman,  1986). 

Exact analytic solutions of Barker's homogeneous isotropic cosmolo- 
gies are scarce. They have been obtained by Barker (1978) for an empty, 
flat (k = 0 )  universe and by Lorenz-Petzold (1984) for empty, nonflat 
(k = ___ 1) models. No other exact solution describing a homogeneous and 
isotropic but more realistic universe is found in the literature. Approximate 
and numerical solutions have been discussed by Yepes and Dominguez- 
Tenreiro (1986). Conformally flat static vacuum solutions and Bianchi type 
VIo solutions were investigated by Shanthi (1989) and Shanthi and Rao 
(1990). 
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In this paper we use the method of Lorenz-Petzold (1984) to solve 
exactly the Barker-Robertson-Walker  (BRW) field equations for the early 
radiation-dominated universe. Consistency between the thermal history of 
the very early universe in the resulting and standard cosmology can be 
established once the solution's free parameters are suitably constrained. 

In Section 2 we display the BRW field equations. In Section 3 we solve 
them for the radiation universe. Section 4 is devoted to a comparison with 
the standard model. Finally, in Section 5 we summarize and discuss our 
results. 

2. BRW FIELD EQUATIONS 

The field equations of the Nordtvedt (1970) general scalar-tensor 
theory are 

1 87rG 

09 1 ,~ 

_ r 1 6 2  _ g . ~  D e )  (1) 

7qr l (8nGT'~,~ -r162 do9) 
3 + 2~ ~-~ (2) 

In these equations G is an arbitrary constant related to G by 

G = ~ \ 3  + 2o9] (3) 

Equations (1) and (2) imply 

T %  = 0 (4) 

i.e., the matter energy-momentum tensor is conserved. 
Barker's (1978) gravity emerges on setting G =G,  so that co = 

( 4 -  3r 2) and r is dimensionless. With the Robertson-Walker 
(RW) metric and the perfect fluid form of the energy-momentum tensor the 
preceding field equations can then be written as [~-1 =(8/3)r ig and 
( . )  - ( , t / a t ) (  �9 )1 

8 - 3 r  
(In R)'" + [(In R)'] 2 - (In R)'(ln r + [(In ~b)'] 2 

12(r - 1) 

1 
= ~ a -l~b -1R212(p - 6p) - 3r - 3p)] (5) 
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[( lnR) ' ]2+(lnR) ' ( ln~b)" 12-(~- ) [ ( l n (o ) ' ]2+kR-2=c t - l (a -~p  (6) 

~" + 3(ln R)'q~ q~2 - -  - 3 ~ - ' ( ~ b  - 1 ) ( p  - 3 p )  ( 7 )  
2(~b -- l) 

where R is the RW scale factor and p and p are the cosmic pressure and 
energy density, respectively. Equations (5)-(7)  imply 

d 
(pR 3) = - 3pR2R (8) 

which is a relation valid in any metric theory of gravity with a conserved 
perfect-fluid energy-momentum tensor. 

3. RADIATION SOLUTIONS 

We consider the early universe with the radiation equation of state 
p = �89 Then equation (8) gives p = 7/R 4, where ~ is a positive constant. 
Introducing the Lorenz-Petzold (1984) variables g and r/ defined by 
g =RZc~ and d t = R d t / ,  we note that equations (5)-(7) can now be 
decoupled to yield 

g" + 4kg = 2ct - 1), (9) 

(g,)2 + 4kg2 = 4o~-I7g + �89 (10) 

( ~ , ) 2  c 2 
(~b- 1)q~ 2 g2 ( l l )  

where a prime denotes differentiation with respect to t /and c 2 is a constant 
(c 2 -  0 or, equivalently, ~b - c o n s t  corresponds to general relativity and is 
therefore excluded). 

The general solutions that follow from equations (9) and (10) are as 
follows: 

(i) k = 0: 

g = 0~-- 112t/2 + at/ + b (12) 

where a and b,are integration constants satisfying 

a 2 = 4~-lyb + �89 2 (13) 

( i i )  k = 1: 

g = a sin(2t/+ b) + �89 - 17 (14) 
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where 

(iii) k = - 1: 

where 

4a 2 = e-2~2 + �89 2 (15) 

g = a sinh(2q + b) - �89 --1~ (16) 

4a 2 = --~x -2,~2 ...{_ lC2 (17) 

Some general characteristics o f  the solutions o f  equat ion (1 I) that  do 
not  depend on k are the following. For  c 2 >  0, ~b > 1. Hence ~b falls on 
branch # 1 o f  the hyperbola  (Barker,  1978), ~o = (4 - 3~b)/(2tk - 2), where 
(o~, 4) runs f rom ( - 3 / 2 ,  oo) at t = 0 to ( m ,  1) as t ~ m.  Then,  assuming 
~/--*0 as t + 0 ,  we have ~b' < 0 and g = R2q~ > 0 with the equality, if valid, 
holding at r / =  0. On the other  hand, c 2 < 0 implies ~b < 1, so that  ~b is on 
branch # 2  o f  the co-~b hyperbola  (Barker,  1978), where (co, ~b) goes f rom 
( - 3 / 2 ,  - m)  to ( - m,  1) and ~b' > 0. In this case lim,_~ o g -< 0. With these 
remarks in mind, the solutions of  equat ion (1) are conveniently discussed 
separately as follows. 

3.1. Flat Universe (k = 0) 

c2 > 0: Then  g ~ b > 0 as t ~ 0. (We admit,  a priori, b = 0, but  will 
shortly show that  it should be excluded.) With b > 0 equations (11 ) - (13 )  
give 

~b = cosecZ .~_~ in 1 + 2x/~Tat - I(x//3a -]- Ic l) - it/ I 
1 +2x /~y~t - l (x / /3a  Icl)-ln (18) 

But if b = 0, we have, up to an additive integration constant ,  

2a tan-l(~b - 1)1/2= Icl lnl(n + =y-la)n-ll (19) 

so that  as q ~ 0 the principal value o f  the left-hand side approaches  rca, 
whereas the r ight-hand side becomes infinite. Because o f  this pathological  
feature we exclude b = 0. 

C2<0: Here g ~ b < O as rl -~ O, so that a2 < O. But  a2 < O is incon - 
sistent with a real ~b. Hence c 2 <  0 is inadmissible. 

3.2. Closed Universe (k = 1) 

c 2 >  0: In this case the ~b solution is 

cosec 2 x /~  In F 1 + x /~a  - 1~ (2x / /3a  + Icl)--1 t a n ( t / +  b/2) 
2 1 + x/ /3=-ly(Nx/~a - I c l )  -1 t an ( r /+  b/2) 

(20) 
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where 

F = 1 + x / ~ - l T ( Z x / ~ a  - [ c l ) - '  tan(b/Z) t (21) 
1 + x / ~ -  17(Zx/~a ~ [c[)-l tan(b/2) 

I 

In particular, for b = 0, F = 1 and 

1 + w/3~-'7(2~/-3a Icl)-I tan q 

c2<0:  Here g~,._,oasinb+�89 so that if b is real, 
-272< 4a 2 sin 2 b < 4a 2, implying by equation (15) the contradictory re- 

sult c z>  0. Hence solutions with c2< 0 do not exist. 

3.3. Open Universe (k = --1) 

c2>0:  g--.,~oasinhb-�89 
where b/a > 0, we find 

~ b = c o s e c 2 ~ _ l n  l + F + t a n h q ] l  + F _  tanhr/ 

where 

c 2 < 0: 
is complex, which is excluded. 

So, provided ]b I -> sinh-~(7/2ela[), 

(23) 

F+ - (2"v/3a -- fcl) tanh(b/2) + . ~  -I 7 (24) 

2w/3a ---Icl + tanh(b/2) 

In this case equation (17) implies a 2 < 0. Hence if b is real, q~ 

4. S T A N D A R D  M O D E L  C O N S T R A I N T S  

We consider now the forms of the previous solutions when ~b >> 1. As 
we shall see, the obtained results are consistent with the standard model 
provided the solution parameters are appropriately constrained. 

4.1. k = 0  

For q~ >> 1, or equivalently, r / ~  0, equation (18) reduces to 

(3a z_ c2)2~z~/-2 4b 2 -2 
~b-  3672c2 = c2 /7 

and REq~ = g --~ b > 0, so that 

/C2\1/4 

(25) 

(26) 
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Thus 

b a/2 = T t  -l 

Also, in terms of the temperature T, 
g2 

)~R -4 = p = ~ ge~T 4 

(27) 

(28) 

where gerr is the effective number of spin degrees, which we assume to be 
constant in the very early universe. One therefore has from (26) the 
temperature-time relation 

/ 30yb \1/4 12 
T = t ~  ) t - /  (29) 

The standard scenario of primordial nucleosynthesis is one of stan- 
dard cosmology's principal successes. Its bases are the formula R = 
(4~-I~)1/4t112 for the dependence of R upon t and the temperature-time 
relation that then follows from equation (28). Multiplicative factors apart, 
equations (26) and (29) have the standard model time dependence. In order 
to preserve the standard nucleosynthesis description, we identify equation 
(29) with the standard relation 

[ 150~ '~1/4-1,2 

Hence C2 =4by0~ -1, R = (4~-1~)114t 112, and using equation (13), v/3a = 
+2lc I. To prevent~b in equation (18) from developing a pole at a finite 
t /~0 ,  we select x/3a = +21c I. Then, from (18), 

13ic' + I (31) = gR-2 = cosec z In 31cl + 6x/~y ~-  it/ 

4.2. k = l  

In the limit t /~0 ,  equation (20) becomes 

(0~ - iF + 2a sin b)2~/-2 
~-- C2 

andR2~b=g- - , a s inb  1 - l  +~0~ F, sothat  

( 2c2 )1/4tl/2 
R =  ~ - l y + 2 a s i n b  

(32) 

(33) 
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In terms of t, equation (32) reads 

~b = (~t-lV + 2a sin b) 3/2 t -  1 (34) 

2,/ 1cl 
The temperature-t ime relation in this case is 

T = (15~2(l+2~a?-lsinb)-)l/4t-l/2~z 2gefrCtC 2 (35) 

In these equations a is given in terms of c by equation (15). 
Identification of equation (35) with the standard temperature-t ime 

relation yields 

( '3 [ ( 15 ~i/2l 2 a =  0 ~ - 2 , 2 + ~ ) ' / 2 = ~  sin b I+ l+sin2 b,] _] (36) 

In particular, 

2a > ~ - 1 7  sinb, b ~ 0 ,  n/2 (37a) 

2a = ~ -ly,  b = re/2 (37b) 

' 2x/~a = x /~ t  -17, b = 0 (37c) 

In the last case equation (22) becomes 

In I + (I/~/3)(~/5 - ~:2) tan r/I (38) q~=gR-Z=c~ 1 + ~ ~ +  x/~) tan q 

4.3. k = - - I  

The asymptotic q ~ 0  form of equation (23) is 

~b = D~/-2 (39) 

where 

c2D = (2a sinh b - ~ -ly)2 

But R 2 ~  = g -'+ a sinh b - �89 ly as r / ~  0. Hence 

{ 21cl 
R = 

and 

c2D 3 I/4 1 

(40) 

(41) 

(42) 
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The temperature-time relation is 

T = (1571D 1/4t--1/2 (43) 
t, , =go,,Ic I ) 

so that the thermal history of the very early universe agrees with the 
standard one if 

1 - -1  2 ~V c = 2a sinh b - ct-'V (44) 

When c 2 in this equation is eliminated using equation (17) a quadratic 
equation in a is obtained. It implies that sinh2b > 15 with the equality 

1 - 1  x/q-~/ = corresponding to a = g~ 7 sinh b = + ( 6)~-17. In this case c 2 
8~-272 and the coefficients F• in equation (24) become 

F_t_ i ~ / ~  "q- ~/c~ (45a) 
x / ~ _ + 4  

F_ = x / ~ T  x/~ (45b) 
4 

Of the exhibited sign combinations, those that produce a zero or a pole of 
the argument of the logarithm in equation (23) should be excluded. 

5. SUMMARY AND DISCUSSION OF RESULTS 

We have derived in this paper new exact solutions to Barker's homoge- 
neous isotropic cosmologies. These solutions are relevant to the early 
radiation era of fiat, closed, and open universes. They do not reduce to the 
vacuum solutions of Barker (1978) and Lorenz-Petzold (1984) in the limit 
of a vanishing radiation density. 

The t-behavior of the solutions as t w O  [equations (26), (27), (33), 
(34), (41), and (42)] is curvature-independent and agrees with the approxi- 
mate results of Yepes and Dominguez-Tenreiro (1986) [see their equations 
(44)-(52)]. The scale factor then grows like t '/2, just as in the standard 
model. It is therefore reasonable to require consistency between the thermal 
histories of the very early universe here and in standard cosmology. The 
motivation is to preserve the apparently successful standard nucleosynthe- 
sis scenario. This requirement yields several constraints on the solution's 
free parameters. The validity of the asymptotic forms of the solutions at the 
time of nucleosynthesis can be checked as follows. 

With the aforementioned standard model constraints on the solution's 
parameters, q is given asymptotically (Vk) by r /=  (t/z) 1/2, where z = 
(4~7-1)-1/2. Now one can set 7 = Prp R4' where the subscript "p"  denotes 
present-day values of the parameters. Taking Prp~ 10 -51 (GeV) 4 and 
Rp g 104~ (GeV) -1, we find z ~ 2.5 x 1017 sec, of the order of the age of the 
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universe. Thus at the beginning of nucleosynthesis (t ~ 1 sec) we have 
r/ ,~  10 -9, SO that the small-r/approximation is well justified. In fact, r/<< 1 
throughout the standard radiation era extending to t ~ 1012 sec (where 
r / ~  10-3). Hence the early universe in Barker's cosmologies evolves essen- 
tially as in the standard model. The scalar field itself assumes a particularly 
simple form when k = 1, b = 0, and r/ small. It is, from equation (38), 
~b = (2r/2) -1 = ~/(2t) ~ 1017 at t ~ 1 sec. Then co ~ - 3 / 2 .  

As noted by Yepes and Dominguez-Tenreiro (1986), equations (26), 
(33), and (41) imply that the horizon problem survives in Barker's models. 
But the presence of  a scalar field might provide a mechanism for its 
solution. Extended inflation in scalar- tensor theories with a dimensional 
scalar field has been proposed recently in order to resolve the cosmological 
problems that plague the standard model (Mathiazhagan and Johri, 1984; 
La and Steinhardt, 1989a,b; Garcia-Bellido and Quir6s, 1990). However, in 
Brans-Dicke cosmology, inflation appears to require a Brans-Dicke con- 
stant parameter co < 30 (Garcia-Bell ido and Quir6s, 1990; La et al., 1989; 
Weinberg, 1989). Such a bound is ruled out by light deflection and 
time-delay experiments, which constrain co to be >500 (Will, 1984). In 
Barker's cosmology, on the other hand, co varies and a small o9 in the 
cosmic dawn is compatible with co > 500 today. 

Finally, we remark that although the physical meaning of  a dimension- 
less ~b is not clear a priori, it has been shown (Sfiez, 1987) that such a field 
can be physically admissible. 
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NOTE A D D E D  IN P R O O F  

After this work was submitted for publication J. D. Barrow published 
a paper (Physical Review D, 47, 5329 (1993)) in which similar exact 
solutions of  scalar- tensor cosmologies were discussed. 
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